Путешествие к центру земли

МОЛОТ Форумы Наука и технологии Путешествие к центру земли

В этой теме 2 ответа, 1 участник, последнее обновление  Arc 10 мес., 2 нед. назад.

Просмотр 3 сообщений - с 1 по 3 (из 3 всего)
  • Автор
    Сообщения
  • #4005

    Arc
    Модератор

    Дэвид Уайтхаус

    Если бы вам удалось прокопать тоннель прямо сквозь Землю, то теоретически, в результате свободного падения, вы смогли бы достичь центра планеты всего за 18 минут. Естественно, это невозможно: подобный тоннель должен был бы выдерживать такие же высокие температуры, как на поверхности Солнца, и давление в 3,5 миллиона раз выше, чем на поверхности Земли. Ни один из существующих на данный момент материалов не способен противостоять столь агрессивной среде. На сегодняшний день мы смогли уйти вглубь всего на 12 километров. Но просто предположите, что бы вы нашли, пробурив тоннель до самого центра Земли? Многое из того, что мы знаем о внутреннем устройстве нашего мира, в особенности о самых потаенных его местах, было открыто совсем недавно. Итак, отважный путешественник, вот с чем ты столкнешься на своем воображаемом пути.

    Кора

    Полет сквозь земную кору — самый дальний от центра каменный панцирь — занял бы всего одну минуту. Толщина внешней оболочки нашей планеты составляет лишь 35 км и 1% от всей массы Земли. Существует два вида коры. Континентальная кора состоит из самых легких горных пород, вроде гранита, и образует материки, лежащие на более твердых породах. Самые древние породы, найденные на поверхности, достигают возраста 4,4 млрд лет — это так называемые «псевдоамфиболиты», обнаруженные в Канаде, на берегах Гудзовова залива. Они затвердели вскоре после формирования Луны, и если бы вам удалось попасть в то время, вы смогли бы понаблюдать за действующими вулканами на поверхности Луны. Исследования самых древних пород показали, что молодая Земля недолго оставалась похожей на ад; она быстро остыла и почти с самого начала существования была покрыта огромными океанами. Все, что когда-либо создавало человечество, сделано из добытых в коре металлов и минералов. Исключение составляют алмазы — они доходят до нас с гораздо большей глубины.

    Так называемая океаническая кора, будучи гораздо моложе континентальной, постоянно образуется у срединно-океанических хребтов, один из которых делит пополам Атлантический океан, откуда разносится большими пластами базальта. Они — движущая сила перемещений материков. На этих плитах часто образуется толстый слой осадочных пород. Но их жизнь на поверхности Земли довольно коротка — не более 200 млн лет, отжив которые, эти базальтовые пласты вновь станут расплавленным камнем., Такие океанические плиты тяжелее континентальной коры, они вдавливаются обратно в глубь Земли, под континенты, принося туда холод, осадочные породы и значительные изменения, что называется субдукцией.

    Мантия

    Вместе с вами базальтовая плита преодолевает земную кору и попадает в мантию — самую большую часть нашей планеты, составляющую около 82% объема и 65% ее массы. Именно в мантии — вся археология нашей планеты, там же протекают недавно открытые процессы и располагаются структуры, которые могут быть необходимы для существования жизни на Земле. В действительности, ученые только начинают понимать, что условия для образования жизни созданы не только Солнцем высоко в небе, но и тем, что происходит в глубине планеты.

    По мере того как плита опускается, давление возрастает; она становится ломкой, так как порода вокруг горячее. Вследствие этого плита трескается и сдвигается, что влечет за собой мощнейшие землетрясения. Япония — самое сейсмоопасное государство — находится как раз над тем местом, где происходит процесс субдукции Тихоокеанской плиты с континентом. Когда порода опускается еще глубже, температура и давление поднимаются до отметки, которую камень уже не выдерживает. Он нагревается так сильно, что плавится, будто пластик. Это значит, что на глубине нескольких сотен километров землетрясения прекращаются. Содержащие воду минералы разрушаются, высвобождая жидкость. Вода, испаряясь, поднимается вверх и достигает мантийных пород. Это приводит к понижению их температуры плавления — в некоторых случаях почти на 400°. Став менее вязкой, порода пробивается к поверхности. Вот почему на расстоянии около ста километров от зоны субдукции расположено множество молодых вулканов.

    Мантия, как правило — и это в целом верно для всей Земли — состоит из четырех элементов: кислорода, кремния, магния и железа. Их атомы формируют решетчатые структуры, образующие под действием давления еще более плотные соединения. Многие годы интерес представлял только верхний слой мантии, так как считалось, что ниже давление и жар сжимали породу так сильно, что разрушали любые структуры. Результатом подобного процесса стала бы однородная каменная масса, которая опускалась бы вниз до тех пор, пока не достигла границы внешней части ядра.

    Сейчас нам известно, что мантия гораздо активнее, чем мы думали. Несмотря на то, что она состоит из твердых пород, она медленно перемещается вместе с опускающейся и поднимающейся породой. Некоторые ученые верят, что существуют так называемые мантийные плюмы, которые пробиваются к поверхности планеты, и что каждые несколько сотен миллионов лет на Землю извергается огромное количество лавы, уничтожающее все живое на своем пути.

    Тузо и Джейсон

    С помощью сложных анализов рожденных землетрясениями ударных волн, рассеивающихся в глубине Земли, ученым удалось обнаружить в основании мантии четыре гигантских образования. Две области, выглядящие опускающимися и относительно прохладными, расположены под западной частью Америки и югом Евразии. Другие две — большие и таинственные, с высокой средней плотностью — расположились под Африкой и Тихим океаном. Африканский регион возвышается над границей между ядром и мантией более чем на тысячу километров, а Тихоокеанская часть лишь немного ему уступает. Вдвоем они охватывают половину планеты. Им даже дали имена в честь геологов-первопроходцев У. Джейсона Моргана и Тузо Вилсона. Некоторые ученые считают, что эти поистине гигантские образования, каждое из которых достигает 15 тыс. км в диаметре, являются подземными материками нашей планеты. Проведенные исследования позволяют предположить, что они довольно древние и сформировались 4,4 млрд лет назад, в самом начале зарождения Земли. Последние данные свидетельствуют о том, что края Тузо и Джейсона оказались острыми, и ученые выстраивают предположения, что они смещают породу вверх, так что то, что когда-то опустилось к нижней мантии, может снова подняться на поверхность миллиарды лет спустя.

    Жидкий металл

    На пути к центру Земли вы дойдете до границы нижней мантии примерно через 8 минут. А затем приготовьтесь к самому невероятному моменту за все путешествие. Больше нигде вы не увидите настолько резкую смену «декораций». На глубине 2890 км, прорвавшись через твердую часть нашей планеты, вы внезапно обнаружите целое море жидкого металла температурой в 5000°C. Это — внешняя часть ядра, она составляет примерно 10% объема Земли и 27% ее массы. Размеры ее можно сопоставить с размерами Марса.

    Представьте, что наша капсула как будто зависла прямо над самой границей раскаленной добела нижней мантии, а затем, пролетев еще буквально пару десятков метров, погружается в расплавленный металл внешней части ядра. Как будто сделав шаг от чуть-чуть неровного склона горы, тут же ныряешь в океан. Вы миновали твердую часть нашей планеты и теперь следующие 2 тыс. км вы будете погружаться в жидкий металл — мрачное море с неспешными течениями, штормами и вихрями, раздираемое магнитными и электрическими полями.

    Если бы вы надели немыслимо прочные защитные перчатки, вы бы смогли зачерпнуть горсть, и металл бы просочился между пальцами как вода. Влияние этой части планеты распространяется и за ее пределы: из-за перемещения потоков возникает магнитное поле Земли — наш величайший защитник. Без него жизнь на Земле была бы невозможна, ведь магнитное поле ограждает нас и от губительного солнечного ветра, и от частиц из глубокого космоса. У Марса нет подобной защиты и из-за этого планета потеряла большую часть своей атмосферы.

    Время от времени с потоками внешней поверхности ядра что-то происходит. Их движение, кажется, становится хаотичным, и они больше не способны создавать столь сильное магнитное поле. На поверхности его сила уменьшается на 10% от изначальных показателей.

    Требуются десятки тысяч лет, чтобы движение потоков пришло в норму, а прежняя сила магнитного поля восстановилась. Но к тому времени происходит смена магнитных полей: север становится югом и наоборот. Такое уже много раз происходило и жизнь на планете сохранилась. Сейчас ничто не указывает на подобные процессы, но когда-нибудь человечеству обязательно придется с этим столкнуться.

    Кристаллизованное ядро

    Еще через восемь минут падения вы достигнете величайшей тайны нашей планеты — суперплотного шара из железа и никеля, раскаленного до температуры поверхности Солнца. Его высокая плотность обосновывается тем, что давление в центре планеты в миллион раз выше, чем на поверхности. Перед вами кристаллизованное ядро, составляющее всего 0,5% от объема нашей планеты, что сравнимо с размерами Луны, и почти 2% от ее массы, а также являющееся самым странным объектом, с которым когда-либо сталкивалась наука.

    Представьте себе объем воды во всех мировых океанах, затем умножьте это на пять, и вы получите объем внутреннего ядра Земли. Собирать информацию о нем довольно сложно, но именно это является маленькой целью ученых-сейсмологов. Сложность заключается в том, что лишь малая часть сейсмических волн достигает ядра, и это уже не говоря о том, что лишь некоторые из них возвращаются на поверхность, чтобы показать, через что они прошли. Разрабатываются новые методы для обнаружения слабых и незаметных волн, проходящих сквозь внутреннее ядро. При правильной обработке станет возможным идентифицировать исходящие от ядра слабые сейсмические волны, однако чем больше мы их изучаем, тем с большим количеством вопросов сталкиваемся.

    Этот железный мир просто плавает в металлическом море и абсолютно точно ни с чем больше не связан. Есть даже признаки, указывающие на то, что скорость его вращения несколько отличается от скорости вращения Земли, а само ядро на многие километры смещено от ее центра.

    Одни считают, что граница между внутренним и внешним ядром волнообразная и мягкая, с растущими в древовидной форме железными кристаллами, и похожа на огромное железное дерево, раскинувшее ветки с подобием железной кашицы между ними. Другие полагают, что лишь несколько сотен километров внутреннего ядра состоят из маленьких кристаллов железа, в то время как внутри него они могут сливаться в огромные кристаллы, совмещенные с общим магнитным полем Земли.

    Эти кристаллы — феномен, невидимые чудеса Солнечной системы. Проплыви вы мимо них, своим строением они бы напомнили вам базальтовые колонны Мостовой гигантов из расположенного в Северной Ирландии графства Антрим, только в тысячи раз длиннее и шире. Один такой кристалл по ширине был бы сравним с городом, а по длине — с расстоянием между Лондоном и Бирмингемом!

    Но самая большая загадка в том, что внутреннее ядро здесь новичок: последние расчеты показывают, что оно образовалось всего 500-1000 млн лет назад и выросло из маленького кристалла железа. Оно продолжает расти со скоростью в 0,5 мм в год и через миллиард лет сможет отключить магнитное поле Земли.

    Мы никогда не достигнем центра Земли. Условия настолько суровы — 6000 градусов по Цельсию и давление в 3,5 миллионов атмосфер, — что не будут предприняты даже попытки это сделать. Возможно, это навсегда останется загадкой. Ученый, принимающий участие в исследованиях внутреннего ядра Земли, сказал мне: «Чем больше данных мы получаем, тем запутаннее все становится. Мы сталкиваемся все с большим количеством трудностей, и чем больше мы делаем для их решения, тем меньше мы понимаем».

    #4010

    Arc
    Модератор

    Ученые нашли «недостающий элемент» ядра Земли

    Ребекка Морель

    Японские ученые полагают, что им удалось определить элемент химического состава ядра Земли, который исследователи пытаются идентифицировать уже много лет.

    По своей доле в химическом составе центра нашей планеты элемент занимает третье место после никеля и железа, однако ученые до сих пор не могут точно его назвать.

    Эксперимент исследователей из университета Тогоку был проведен в условиях высокой температуры и давления, чтобы как можно точнее симулировать реальную обстановку в центре Земли. По его итогам ученые пришли к выводу, что скорее всего искомым элементом является кремний.

    Это открытие может помочь нам получить более ясное понимание того, как формировалась наша планета.

    «Мы считаем, что кремний — важный элемент в составе ядра — около 5% веса [внутреннего ядра Земли] могут приходиться на кремний, растворенный в железо-никелевых сплавах», — рассказал в интервью Би-би-си ведущий исследователь Эйдзи Отани из университета Тохоку.

    Вне досягаемости

    Внутреннее ядро Земли ученые представляют как твердый шар диаметром примерно 2400 км.

    Ядро находится слишком глубоко под земной поверхностью, чтобы исследовать непосредственно, поэтому для определения его состава ученые изучают то, как отражаются и преломляются проходя через центр планеты продольные сейсмические волны.

    Ученым удалось определить, что примерно на 85% ядро состоит из железа, и еще на 10% — из никеля. Из чего состоят оставшиеся 5% ядра с точностью установить до их пор не удавалось. В частности ученые предполагали, что это может быть углерод или кислород. То, что это может быть кремний, также постулировалось в прошлом.

    Чтобы установить состав оставшихся 5% ядра, команда Эйдзи Отани смешала железно-никелевый сплав с кремнием. После этого смесь подвергли воздействию высокой температуры и давления, таким образом создав условия близкие к условиям центра Земли.

    Как обнаружили ученые, показатели искажения волн при проходе через эту смесь полностью совпадали с поведением сейсмических волн, проходящих через ядро планеты.

    Впрочем, по словам Охани, окончательно присутствие и долю кремния в ядре еще предстоит подтвердить, а открытие не отменяет наличия в составе ядра новых элементов.

    Зарождение ядра

    «Такие сложные эксперименты очень важны, потому что могут показать, какой была Земля внутри сразу после того, как сформировалась около четырех с половиной миллиардов лет назад», — комментирует исследование профессор Саймон Редферн из униварситета Кембриджа.

    «Но другие исследователи недавно предположили, что в составе ядра важную роль может играть также кислород,» — добавляет ученый.

    В частности, говорит Редферн, эти знания помогут ученым определить, какое количество кислорода присутствовало в только что сформировавшемся ядре.

    Если, как следует из исследования японских ученых, в ядре было большое количество кремния, это может означать, что в окружающей ядро мантии было относительно много кислорода.

    Однако если в ядре найдут кислород а не кремний, это будет значить, что при формировании планеты он перетекал из мантии в ядро, а значит четыре с половиной миллиарда лет назад уровень кислорода в мантии Земли был крайне низок.

    «Эти два варианта являются взаимоисключающими и во многом определяются условиями, в которых начало формироваться земное ядро», — говорит профессор Редферн.

    «Последние находки добавляют нам понимания, но я подозреваю, что они не станут последним словом в этой истории», — подытожил профессор.

    #4011

    Arc
    Модератор

    Земля могла намагнититься, поглотив небесное тело типа Меркурия

    Поглощением протопланеты с большим содержанием серы можно объяснить две давние загадки в истории формирования Земли

    Девин Пауэлл (Devin Powell)

    В младенчестве Земля могла поглотить планету, похожую на Меркурий, но намного больше. Этим ранним завтраком можно объяснить загадочный состав земных слоев, и это же могло быть причиной возникновения земного магнетизма, благодаря которому на нашей планете возникла и существует жизнь.

    «Нам кажется, мы можем одним выстрелом убить двух зайцев», — говорит геохимик из Оксфордского университета Бернард Вуд (Bernard Wood), который на днях выдвинул эту идею в журнале Nature.

    Кажется невероятным, что в 2015 году мы так пока и не знаем, каким образом сформировался наш мир. Но задумайтесь, насколько трудно заглянуть в его внутренности. Самый долгий и самый трудный процесс бурения так и не позволил пока пробраться через внешнюю кору Земли. Естественные каналы раскаленных пород помогают нам, вынося на поверхность вещества из глубокого слоя мантии и давая таким образом нам возможность для их изучения. Но даже эти каналы длиной в сотни километров слишком мелки, если задуматься о том, что центр планеты лежит у нас под ногами на глубине шести тысяч километров. Поэтому воссоздание истории Земли немного напоминает попытку догадаться о том, как пекли торт, если попробовать его глазурь и несколько случайных крошек. Налицо широкий простор для новых идей и исследований.

    «Сейчас очень интересное время для таких занятий, — говорит геохимик Ричард Карлсон (Richard Carlson) из вашингтонского Института Карнеги. — Из исследований глубин Земли появляется много фактов, которые мы не очень хорошо понимаем».

    Традиционная теория о формировании Земли начинается со слипания космических обломков. Глыбы, похожие на твердые метеориты, которые продолжают сыпаться на нас сверху по сей день, соединялись друг с другом, формируя куски все большего размера. Сжимаемая, бомбардируемая и нагревающаяся куча обломков и мусора в итоге расплавилась, а затем остыла, медленно формируя слои на протяжении миллиардов лет. Изученные в 1980-х годах геологические крошки помогли подтвердить данную теорию. За исключением некоторых металлов типа железа, большая часть которого предположительно опустилась в центр Земли, земная порода, похоже, состоит из тех же веществ, что и каменные метеориты с хондритовой структурой.

    Но примерно десять лет назад Карлсон нашел повод для сомнений, когда сравнил земные породы и космические при помощи более совершенных приборов. Его коллектив исследовал два редких элемента с необычными названиями и магнетическими свойствами: это неодимий, входящий в состав магнитов, используемых в гибридных автомобилях и больших ветряных турбинах, и самарий, который часто применяют в магнитах наушников. Ученые обнаружили, что в земных образцах содержится меньше неодимия по отношению к самарию, чем в хондритовых метеоритах.

    Такое маленькое расхождение в несколько процентов было трудно объяснить. Возможно, предположил Карлсон, Земля в процессе остывания формировала слои быстрее, чем мы думали ранее, не за миллиарды лет, а за десятки миллионов. Верхний слой, который образовался быстро, истощил свои запасы ниодимия, который опускался вниз, прячась глубоко в мантии. Но никто так и не нашел доказательств существования такого тайного резервуара. Трудно объяснить упорное стремление ниодимия оставаться в глубине, учитывая то, что мантия бурлит как кипящий суп, часто выбрасывая свое содержимое на поверхность, когда создает вулканы. А если Луна появилась, когда в Землю врезалось какое-то планетарное тело, как думают многие, то в результате плавления от столкновения запас ниодимия должен был снова смешаться с мантией.

    Вместо того, чтобы пытаться объяснить исчезновение ниодимия, вторая группа ученых предложила избавиться от этой идеи. Они представили себе земную кору, обогащенную ниодимием, которая вырастала на хондритовых породах, ставших основой состава Земли. Столкновения между этими телами должны были снять значительную часть внешнего слоя, из-за чего количество ниодимия уменьшилось.

    Но в такой точке зрения тоже есть свои проблемы. Пока не найдено ни одного метеорита, состав которого похож на обломки эрозии. Кроме того, эта содранная оболочка должна была забрать с собой значительную часть земного тепла. Уран, торий и прочие радиоактивные элементы, которые, как нам известно, нагревают нашу планету, также должны были оказаться в содранном слое.

    «Около 40% тепловыделяющих элементов Земли должны были уйти в космос», — говорит геохимик из Австралийского национального университета Иэн Кэмпбелл (Ian Campbell).

    Надеясь объяснить присутствие этих критических элементов, Вуд решил узнать химический состав Земли в ее молодости. Вдохновение он черпал в одной из наиболее странных планет нашей солнечной системы — в Меркурии. По своему химическому составу ближайшая к солнцу планета это адское место, где полно серы. Как молодая Земля могла формировать слои, если она была больше похожа на Меркурий? Чтобы ответить на этот вопрос, Вуд добавил серу к смеси элементов, которые должны были имитировать состав примитивной Земли. Он варил макеты планет при высокой температуре, равной температуре горения реактивного топлива, а затем бил их поршнем под давлением, в 15 000 раз превосходящем давление в обычной скороварке.

    Насытившись серой, эти миниатюрные прото-миры прятали неодимий, формируя свои слои. Но прятали они его не в своих мантиях, а в ядре. Навечно застрявший в ядре ниодимий мог объяснить аномалию, о которой думал Карлсон. Дополнительный объем серы мог попасть на Землю вместе с небесным телом типа Меркурия, которое столкнулось с формировавшейся Землей на раннем этапе ее существования. Вуд предположил, что это же тело сформировало Луну.

    «Нам понадобилось бы тело размером 20-40% от размера Земли», — говорит он. Возможно также, что Земля в самом начале формировалась из ядра, но состоящего не из хондритов, а из другого космического мусора с большим содержанием серы. В любом случае, такой космический сценарий мог создать условия для возникновения жизни на Земле. Дело в том, что сера должна была помочь вовлечь в земное ядро уран и торий. Дополнительное тепло от этих радиоактивных элементов помогло перемешать наружную часть ядра, и такое активное движение расплавленного металла могло породить потоки, которые в свою очередь создают земное магнитное поле.

    Без магнетизма морские черепахи и капитаны морских судов не могли бы ориентироваться — и даже существовать. Жизнь на поверхности планеты была бы невозможна без защиты, которую это поле создает от выстреливаемых Солнцем частиц большой энергии.

    Коллеги Вудса называют его теорию весьма разумной. Но она отнюдь не безусловна и исчерпывающа, как и другие истории о возникновении Земли, написанные в последние годы. Во-первых, те значения температуры и давления, которых добились ученые в ходе эксперимента, хоть и являются чрезвычайно высокими, но им далеко до условий, существовавших внутри прото-Земли. Во-вторых, исследования закономерностей и мест землетрясений внутри нашей планеты помогли определить пределы веса ядра. Если в центре Земли имеется большое количество серы, значит, ядро находится в опасной близости к этим пределам.

    Чтобы привести дополнительные доводы в защиту своей точки зрения, Вуд планирует поискать в периодической таблице другие элементы, чье таинственное изобилие можно объяснить добавлением серы к первичной смеси. С учетом истории исследований в этой сфере, ему придется очень сильно потрудиться, чтобы убедить скептиков типа геохимика Билла Макдоноу (Bill McDonough), работающего в Мэрилендском университете. «Мне кажется, что шансов на истинность этой гипотезы гораздо меньше 50%», — говорит он.

Просмотр 3 сообщений - с 1 по 3 (из 3 всего)

Для ответа в этой теме необходимо авторизоваться.